Полный обзор платы заряда li-ion аккумуляторов - электроника - обзоры - качественные обзоры товаров из китая. Все для литиевых аккумуляторов: микросхемы STM для зарядных устройств и мониторинга батарей Подключить контроллер заряда li ion аккумулятора

Имеющийся в наличии аккумулятор BL-4C от телефона Nokia давно не давал покоя своей неприспособленностью, а частая замена Крон в тестере натолкнула на мысль о его переводе на питание от литиевого аккумулятора.
Для этого нужны аккумулятор, повышающий преобразователь и контроллер заряда аккумулятора.
Среди большого разнообразия схем и решений в виде готовых модулей заряда литиевых аккумуляторов приглянулся модуль на широко известном чипе TP4056. На основе данного чипа китайская промышленность выпускает целый спектр плат контроллеров заряда Li-on аккумуляторов – без защиты от короткого замыкания и переполюсовки, с защитой, с возможностью подключения термодатчика и т.д.
Ввиду того что внутренний мир BL-4C уже содержит плату защиты от короткого замыкания, переполюсовки и т.д., для реализации задуманного был выбран самый простой модуль, содержащий лишь контроллер уровня заряда.

Данный модуль имеет следующие характеристики:
Входное напряжение: 4,5-5,5 Вольт. (Согласно даташита на чип TP4056 можно подавать до 8 вольт, но в данном случае зарядный ток будет уменьшен контроллером);
Зарядный ток: 1000 мА (регулируется подбором резистора Rprog);
Напряжение полного заряда: 4.2В;
Входной разъем: mini USB (+ места для подпайки проводов);
Габариты: 25*19*4 мм



Схема модуля имеет следующий вид:

Как работает модуль?
При подключенном аккумуляторе и подаче питания загорается красный светодиод, сигнализирующий о подаче входного напряжения. После этого начинается процесс заряда. Этим процессом управляет сам чип. Зарядка производится номинальным током (в базовом варианте 1000 мА). По мере заряда банки контроллер снижает зарядный ток.
В тот момент, когда аккумулятор зарядился до 4,2В, контроллер снижает зарядный ток до 50 мА и загорается синий светодиод. В таком состоянии аккумулятор может находиться бесконечно долго без всякого вреда.

Что необходимо помнить?
Данный модуль не имеет защиты от переполюсовки и короткого замыкания на выходе. Если это случится, чип выйдет из строя и при монтаже следует быть внимательным.
В базовом варианте (1000 мА) чип может существенно нагреваться. Согласно даташита предельная температура нагрева 145 градусов.
Производитель чипа рекомендует заряжать аккумуляторы током 0,37С, т.е. в моем случае
860 мА*0,37 = 318 мА.
Таблица зависимости зарядного тока от номинала сопротивления Rprog

В наличии нашлись резисторы по 3,6 кОм. Ориентировочно ток заряда составит нужную величину.

Перепаиваю, соединяю с АКБ и пока заряжаю понижающим преобразователем. Повышающий пока в пути из Китая.





В результате: контроллер чуть теплый, АКБ заряжена, время зарядки 2 часа.

Планирую купить +45 Добавить в избранное Обзор понравился +32 +71

И снова устройство для самоделкиных.
Модуль позволяет заряжать Li-Ion аккумуляторы (как защищённые так и незащищённые) от порта USB посредством кабеля miniUSB.

Печатная плата - двусторонний стеклотекстолит с металлизацией, монтаж аккуратный.




Собрана зарядка на базе специализированного контроллера заряда TP4056.
Реальная схема.


Со стороны аккумулятора, устройство ничего не потребляет и его можно оставлять постоянно подключенным к аккумулятору. Защита от КЗ на выходе - есть (с ограничением тока 110мА). Защита от переполюсовки аккумулятора отсутствует.
Питание miniUSB продублировано пятаками на плате.




Работает устройство так:
При подключении питания без аккумулятора, загорается красный светодиод, а синий периодически помаргивает.
При подключении разряженного аккумулятора, красный светодиод гаснет и загорается синий - начинается процесс заряда. Пока напряжение на аккумуляторе меньше 2,9V, ток заряда ограничен величиной 90-100мА. С повышением напряжения выше 2.9V, ток заряда резко возрастает до 800мА с дальнейшим плавным повышением до номинала 1000мА.
При достижении напряжения 4,1V, ток заряда начинает плавно снижаться, в дальнейшем происходит стабилизация напряжения на уровне 4,2V и после уменьшения зарядного тока до 105мА светодиоды начинают периодически переключаться, показывая окончание заряда, при этом заряд всё равно продолжается с переключением на синий светодиод. Переключение идёт в соответствии с гистерезисом контроля напряжения аккумулятора.
Номинальный ток заряда задаётся резистором 1,2кОм. При необходимости, ток можно уменьшить увеличивая номинал резистора согласно спецификации контроллера.
R (кОм) - I (mA)
10 - 130
5 - 250
4 - 300
3 - 400
2 - 580
1.66 - 690
1.5 - 780
1.33 - 900
1.2 - 1000

Конечное напряжение заряда жёстко задано на уровне 4,2V - т.е. не всякий аккумулятор будет заряжен на 100%
Спецификация контроллера.

Вывод: устройство простое и полезное для выполнения конкретной задачи.

Планирую купить +167 Добавить в избранное Обзор понравился +96 +202

Для чего литий─ионному аккумулятору нужен контроллер зарядки?

Многие читатели сайта спрашивают о том, что такое контроллер заряда литий─ионного аккумулятора, и для чего он нужен. Этот вопрос кратко упоминался в материалах, где описывались различные типы литиевых аккумуляторов. Этот тип аккумуляторных батарей практически всегда имеет в своём составе контроллер зарядки, ещё называемый платой защиты Battery Monitoring System (BMS). В этой заметке подробнее рассмотрим, что это за устройство, и как оно функционирует.

Простейший вариант контроллера зарядки литий─ионных АКБ можно увидеть, если разобрать аккумулятор планшетного компьютера или телефона. Он состоит из банки (аккумуляторного элемента) и печатной платы защиты BMS. Это и есть контроллер зарядки, который можно видеть на фото ниже.

Основой здесь является микросхема контроллера защиты. Полевые транзисторы используются для раздельного управления защитой при зарядке и разрядке аккумуляторного элемента.

Назначение контроллера защиты в том, что он следит за тем, чтобы банка не заряжалась выше напряжения 4,2 вольта. Литиевый аккумуляторный элемент имеет номинальное напряжение 3,7 вольта. Перезаряд и превышение напряжения выше 4,2 вольта могут привести к тому, что элемент выйдет из строя.

В аккумуляторах смартфонов и планшетов плата BMS следит за процессом заряда и разряда одного элемента (банки). В аккумуляторах ноутбуков таких банок несколько. Обычно от 4 до 8.

Также контроллер следит за процессом разрядки аккумуляторного элемента. При падении напряжения ниже порогового (обычно 3 вольта) схема отключает банку от потребителя тока. В результате устройство, работающее от аккумулятора, просто выключается.
Среди прочих функций контроллера зарядки стоит отметить защиту от короткого замыкания. На некоторых платах защиты BMS устанавливается терморезистор для защиты аккумуляторного элемента от перегрева.

Платы защиты BMS для литий─ионных аккумуляторов

Контроллер, рассмотренный выше, является простейшим вариантом защиты BMS. На самом деле разновидностей таких плат гораздо больше и есть довольно сложные и дорогостоящие. В зависимости от сферы применения выделяют следующие виды:

  • Для портативной мобильной электроники;
  • Для бытовой техники;
  • Применяемые в возобновляемых источниках энергии.


Часто такие платы защиты BMS можно встретить в составе систем с солнечными батареями и в ветряных генераторах. Там, как правило, верхний порог срабатывания защиты по напряжению составляет 15, а нижний – 12 вольт. Сам аккумулятор в штатном режиме выдаёт напряжение 12 вольт. К аккумуляторной батарее подключается источник энергии (например, солнечная панель). Подключение выполняется через реле.

При увеличении напряжения на аккумуляторе более 15 вольт срабатывают реле и размыкают цепь заряда. После этого источник энергии работает на предусмотренный для этого балласт. Как говорят специалисты, в случае с солнечными панелями это может дать нежелательные побочные эффекты.

В случае ветряных генераторов BMS контроллеры применяются обязательно. Контроллеры зарядки для бытовой техники и мобильных устройств имеют существенные различия. А вот контроллеры аккумуляторов ноутбуков, планшетов и телефонов имеют одинаковую схему. Разница заключается только в количестве контролируемых аккумуляторных элементов.

В статье расскажем про контроллер заряда Li-Ion на MCP73833.

Рисунок 1.

Предыдущий опыт

До этого момента я использовал контроллеры LT4054 , и честно говоря, был им доволен:

Он позволял заряжать компактные Li-Pol аккумуляторы ёмкостью до 3000мАч

Был ультрокомпактен: sot23-5

Имел индикатор зарядки аккумулятора

Имеет кучу защит, что делает из него практически не убиваемый чип

Рисунок 2.

Дополнительным плюсом является то, что перед тем как я на нём начал что-то делать, я купил их 50 штук, по очень скромной цене.

Недостатки я выявил в работе, и они меня, честно говоря, поставили в частичный ступор:

Максимальный заявленный ток 1А, думал я. Но уже при 300мА в процессе зарядки чип прогревается до 110*С даже при наличии больших полигонов-радиаторов и радиатора прикреплённого к пластиковой поверхности чипа.

Во время включения тепловой защиты, там видимо срабатывает компаратор, который быстро сбрасывает ток. В результате этого микросхема превращается в генератор, который убивает батарейку. Таким образом я убил 2 аккумулятора, пока не понял в чём дело с осциллографом.

В виду вышеперечисленного я получил проблему с временем заряда устройства порядка 10 часов. Конечно, это сильно не устраивало меня и потребителей моей электроники, но что поделать: все хотели увеличить ресурс работы при тех-же параметрах устройства, а они у меня порой потребляют много.

В связи с этим я начал искать контроллер, который был бы с куда лучшими параметрами и возможностями теплоотвода и мой выбор остановился пока на MCP73833 в основном из-за того, что данные контроллеры были у моего друга в наличии, и я свистнув пару штук быстро(быстрее его) запаял прототип и провёл нужные мне испытания.

Немного о самом контроллере.

Давайте я не буду заниматься полным и доскональным переводом даташита(хотя это и полезно), а быстро и просто расскажу о том, на что я смотрел в первую очередь в данном контроллере и нравилось ли мне это или нет.

1. Общая схема включения – это то, что бросается в глаза с начала. Легко заметить, что за исключением индикации (которую можно и не делать) обвязка состоит всего из 4 деталей. В них входят два фильтрующих конденсатора, резистор программирования тока заряда аккумулятора и терморезистор на 10к для контроля перегрева Li-Ion аккумулятора. Данная схема показана на рисунке 3. Это определённо здорово.

Рисунок 3. Схема подключения MCP73833

2. У неё в разы лучше с теплом. Это видно даже по схеме подключения, так как видны одинаковые ножки, которые можно использовать под отвод тепла. Дополнительно к этому, взглянув на то, что микросхема выпускается в корпусах msop-10 и DFN-10, которые больше по площади поверхности чем sot23-5. Тем более в корпусе DFN-10 есть специальный полигон, который можно и нужно использовать как отвод тепла на большую поверхность. Если не верите, то сами смотрите на рисунок 4. На нём приведены выводы ножек у DFN-10 корпуса и рекомендуемая производителем трассировка печатной платы, с отводом тепла при помощи полигона.

Рисунок 4.

3. Наличие терморезистора на 10к. Конечно, в большинстве случаев я им пользоваться не буду, так как я уверен, что не перегрею батарейку, но: есть задачи, в которых я подразумеваю полный заряд батарейки всего за 30 минут работы от блока питания. В таких случаях, возможен вариант перегрева самого аккумулятора.

4. Достаточно сложная система индикации зарядки аккумулятора. Как я понял и попробовал: там 1 светодиод отвечает за то, подведено ли питание со стороны заряжающего блока питания. По идее, штука не такая нужная, но: у меня были случаи, когда я разбивал разъём и просто контроллер не получал 5В на вход. В таких случаях сразу было понятно, что не так. Крайне полезная фишка для разработчиков. Для потребителей она легко заменяется просто светодиодом по линии 5В входа, установленного с ограничивающим его ток резистором.

5. Два остальных светодиода разбиты на стадии зарядки. Это позволяет разгрузить МК(если не требуется например показывать на дисплее заряд аккумулятора) в плане обработки заряда на батарейке во время зарядки(индикация зарядился или нет).

6. Программирование тока заряда в широких пределах. Лично я попробовал вытащить на плате, показанной на рисунке 1 зарядный ток в 1А, и на отметке 890мА плата в стабильном режиме работы уходила в тепловую защиту. Как говорят люди вокруг, при больших полигонах они отлично вытаскивали с данного контроллера и 2А, а по техническому описанию предельный ток заряда 3А, но у меня есть ряд сомнений, связанных с тепловой нагрузкой на микросхему.

7. Если верить даташиту, то в данной микросхеме есть: Low-Dropout Linear Regulator Mode – режим пониженного входного напряжения. В этих режимах вы, с помощью DC-DC преобразователя аккуратно можете на время начала заряда немного снизить напряжение на входе микросхемы, для уменьшения её тепловыделений. Лично я пробовал снижать напряжение, и тепла становилось логично меньше, но на данной микросхеме должно падать хотя бы 0,3-0,4В, чтобы она могла удобно ей заряжать батарейку. Чисто технически я собираюсь сделать небольшой модуль, который это делает автоматически, но денег и времени на это у меня нет, по этому радостно прошу в почту всех заинтересовавшихся. Если вас наберётся несколько ещё человек, то такую штуку нашим сайтом мы выпустим.

8. Не понравилось, что корпус совсем маленький. Паять его без фена (DFN-10) сложно, и качественно не получится, как ни крути. С msop-10 по лучше, но у новичков уходит значительное время обучиться технике его пайку.

9. Не понравилось, что в данном контроллере нет встроенного BMS(защиты аккумулятора от быстрого заряда/разряда и ещё ряда проблем). Но такие штуки есть у более дорогих контроллеров у тех-же TI.

10. Понравилась цена. Данные контроллеры не дорогие.

Что дальше?

А дальше я собираюсь внедрять данную микросхему в различные свои идеи по устройствам. К примеру, сейчас уже производиться на заводе пробная версия отладочной платы на базе STM32F103RCT6 и 18650 аккумуляторов. У меня уже есть отладочная плата на данном контроллере, которая себя очень хорошо зарекомендовала и я хочу дополнить её носимой версией для того, чтобы я мог взять свой рабочий проект с собой и не думать о питании и поиски розетки, в которую можно вставить блок питания.

Так-же я буду использовать её во всех решениях, где требуются зарядные токи более 300мА.

Надеюсь и вы, сможете применить данную полезную и простую микросхему в своих устройствах.

Если вообще интересно про батарейное питание, то вот моя личная видеозапись по поводу батарейного питания устройств.

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Случайные статьи

Вверх