Как проверить тдкс у телевизора орион. Проверка импульсных трансформаторов и тдкс. Интересное видео: высокое напряжение на тдкс

Глава 9. Строчная и кадровая развертки в телевизорах с цифровым управлением (продолжение)

Существуют неисправности, при которых длительность импульса будет колебаться между «нормой» и «неисправностью». Плавающие значения длительности импульса свидетельствуют о множественных импульсах или слишком малом шунтировании обмоток выходного трансформатора строчной развертки. В обоих случаях вам предстоит устранить неисправности, связанные с обрывом или отсоединением какой-либо нагрузки или с нарушениями синхронизации.

Таблица 9.2. Расшифровка результатов нагрузочного тестирования

Результаты тестирования мА мкс наиболее вероятная причина неисправности
- - Неправильно присоединены щупы. Обрыв строчного трансформатора. Обрыв цепи питания В+.
Неиспр. - Короткое замыкание или утечка в цепи В+.
Норма - Обрыв строчного трансформатора. Не присоединен коллекторный щуп. Обрыв предохранителя.
Неиспр. Норма Короткое замыкание или утечка в цепи В+, или во вторичной цепи строчного трансформатора.
Норма Неиспр. Неисправность времязадающих элементов выходного каскада. Короткое замыкание во вторичной цепи строчного трансформатора.
Неиспр. Неиспр. Утечка в цепи питания В+. Короткое замыкание или утечка во вторичной цепи строчного трансформатора. Неисправность времязадающих элементов выходного каскада.

Наиболее вероятной причиной короткого замыкания в цепи напряжения +В является пробой выходного строчного транзистора.Отсоедините выходной строчный транзистор от шасси и проверьте, каков будет потребляемый ток при выполнении нагрузочного тестирования. Если после отсоединения транзистора ток упадет до значения 10 мА или меньше, можете быть уверены, что выходной транзистор закорочен. Если же короткое замыкание не исчезло после отсоединения выходного транзистора, продолжайте отсоединять один за другим все возможные элементы, неисправность которых могла бы вызвать короткое замыкание рис. 9.20, пока дефектная деталь не будет найдена.

Внимание! В исправном состоянии ни выходной строчный транзистор, ни демпферный диод не влияют на проведение нагрузочного тестирования, поэтому начинать тестирование можно и без отсоединения этих компонентов.

Рис. 9.20. Возможные пути утечки постоянного тока

Кроме короткого замыкания в нагрузке тестирование может показать повышенное потребление тока по шине напряжения В+ (от 80 до 200 мА). В этом случае первым делом нужно выяснить, какого рода ток явился причиной перегрузки - переменный или постоянный. Для этого отсоедините тот щуп нагрузочного тестера, который присоединен к коллектору выходного транзистора. При этом выходной каскад прекращает переключение тока, и переменный ток через первичную обмотку строчного трансформатора и через отклоняющую катушку также прекращается. Из потребителей постоянного напряжения питания В+ остаются выходной каскад, предоконечный каскад и, возможно, генератор. Обычно при нагрузочном тестировании эти цепи потребляют не более 10 мА. Если ток намного больше, следует ожидать наличия короткого замыкания или утечки в каком-либо элементе, подсоединенном к шине В+. Если же при отсоединении щупа от коллектора выходного транзистора устанавливается нормальная сила тока, значит, перегрузка была вызвана утечкой переменного тока.

Существует много возможных путей утечки постоянного тока (рис. 9.20). Причиной утечки или короткого замыкания по постоянному току может быть пробой электролитического конденсатора или выпрямительного диода в источнике питания В+, или любого другого элемента, подсоединенного к шине В+. Для того чтобы найти неисправный элемент, произведите нагрузочное тестирование, не присоединяя соответствующий щуп нагрузочного тестера к коллектору выходного транзистора. Затем отсоединяйте подозрительные на утечку элементы один за другим, измеряя при этом потребляемый ток по линии В+. Начните с выходного транзистора строчной развертки и демпферного диода.

Для того чтобы с помощью нагрузочного тестера найти короткие замыкания или утечки во вторичных цепях строчного трансформатора, используйте вольтметр постоянного тока при измерениях выпрямленных вторичных напряжений и осциллограф- при измерениях импульсных напряжений на вторичных обмотках строчного трансформатора. - Помните, что нагрузочный тестер имитирует работу горизонтального выходного каскада телевизора при напряжении питания, вдесятеро меньшем номинального. Следовательно, и все вторичные импульсные и постоянные напряжения будут составлять примерно 1/10 номинальных значений, приведенных в схеме.

Если измеряемое постоянное напряжение или размах импульсного напряжения существенно ниже 1/10 номинального, либо его нет вовсе, значит, в какой-либо вторичной цепи имеется короткозамкнутый элемент. Это может быть закороченный диод, выпрямляющий вторичное напряжение, или электролитический конденсатор фильтра, или, наконец, короткозамкнутый виток в строчном трансформаторе. Неисправные диоды и конденсаторы найти сравнительно просто, а вот для того чтобы удостовериться в наличии короткозамкнутого витка, придется проверить строчный трансформатор методом так называемой «прозвонки» (см. ниже).

9.7.2. «Прозвонка» выходного трансформатора строчной развертки и отклоняющих катушек

Итак, нагрузочное тестирование показало, что каскад работает не- нормально. С большой долей вероятности в этом виноваты строчный трансформатор или горизонтальные отклоняющие катушки. Скорее всего, появилось замыкание между слоями обмотки или между соседними витками, или в нескольких витках. Даже один закороченный виток в строчном трансформаторе или отклоняющей катушке значительно снижает индуктивность обмотки, вызывает повышенное потребление тока от источника питания. В результате сгоревшие выходные транзисторы, срабатывание защиты по сверхтоку или перегрузка источника питания. Причем закороченные витки имеют обыкновение сгорать внутри трансформатора или катушки без каких бы то ни было видимых снаружи последствий.

«Прозвонка» позволяет выяснить, имеются ли в обмотке отклоняющей катушки или строчника закороченные витки (или виток). При выполнении «прозвонки» параллельно обмотке строчного трансформатора или отклоняющей катушке подключается определенная емкость (обычно 0,01 мкФ); и на эту цепь подаются импульсы от такого же импульсного генератора, который используется для нагрузочного тестирования. Желательно только уменьшить частоту этого генератора до 1-2 кГц, сохранив длительность импульсов около 10 мкс. LC цепь при воздействии импульсов генерирует затухающие через несколько циклов колебания. Скорость затухания зависит от добротности (Q) катушки, причем исправные катушка или трансформатор выдадут много циклов, прежде чем затухнуть.

«Прозвонку» можно выполнять, не выпаивая строчный трансформатор из шасси, а вот отклоняющую систему лучше отсоединить (как правило, сделать это очень просто). С помощью осциллографа можно установить, какое количество циклов приходится на время затухания колебаний до 25% их первоначальной амплитуды. Исправная катушка (с высоким Q) прозвонит 10 и более раз, а катушка с закороченным витком - менее 10 раз.

Из-за одного закороченного витка все остальные обмотки на том же сердечнике «зазвенят» плохо. Поэтому просто- напросто прозвоните первичную обмотку трансформатора. Его первичная обмотка - это та, которая подсоединяется к коллектору транзистора горизонтального выходного каскада и к источнику питания.

Отключите источник питания телевизора, а затем подсоедините щупы импульсного генератора и осциллографа вместе с навесным конденсатором к первичной обмотке строчного трансформатора или к обмотке отклоняющей катушки. Если проверяемый элемент исправен, то на экране осциллографа будет получена картина, подобная той, которая представлена на рис. 9.21.

Если же колебания затухают быстрее, показывая низкую добротность исследуемого контура, отсоединяйте нагрузки вторичных обмоток строчного трансформатора, пока не достигнете «нормы». Заметив, какая из нагрузок уменьшила добротность трансформатора, можно в этой вторичной цепи отыскать, например, закороченный диод или электролитический конденсатор.

Может оказаться, что результаты «прозвонки» остаются плохими даже после того, как отключены все нагрузки, тогда скорее всего имеется закороченный виток. Отделите строчный трансформатор от шасси и еще раз методом «прозвонки» проверьте его.

С помощью «прозвонки» можно также найти закороченные витки в отклоняющей катушке кадровой развертки и в переключающем трансформаторе блока питания.

9.7.3. Проверка трансформаторов с диодно-каскадным умножителем (ТДКС)

ТДКС похож на строчные трансформаторы ранних моделей - за одним исключением. В ТДКС цепи умножителя высокого напряжения смонтированы вместе с обмотками выходного трансформатора строчной развертки. ТДКС легко отличить по выходящему из него кабелю высокого напряжения, идущему потом на кинескоп.

Рис. 9.21. Осциллограмма «прозвонки» ТВС

Высоковольтные диоды, создающие анодное и фокусирующее напряжения, смонтированы в ТДКС. Диоды могут быть пробиты (закорочены) или разорваны, или давать утечку, в результате чего анодное и (или) фокусирующее напряжение на кинескопе может быть низким или отсутствовать вовсе. Закороченные или оборванные вторичные обмотки в блоке умножителя могут вызвать такие же симптомы.

Итак, если горизонтальный выходной каскад работает нормально, а анодное и фокусирующее напряжение ЭЛТ низкое или отсутствует вовсе, следует проверить блок умножителя горизонтального выходного каскада.

Подавая на первичную обмотку строчного трансформатора импульсы, аналогичные импульсам горизонтального выходного каскада, можно провести динамическое тестирование ТДКС: проверить, как выпрямляются и умножаются подаваемые импульсы. Неисправный диод, обмотка или сердечник строчного трансформатора приведут к снижению выходного напряжения ТДКС. Динамическое тестирование можно выполнять с помощью того же устройства, что и нагрузочное тестирование. Следует лишь так отрегулировать напряжение питания, подаваемого на первичную обмотку строчного трансформатора, чтобы размах импульсов на стоке ключевого транзистора составлял примерно 25 В. Затем измеряют выходное напряжение на аноде кинескопа относительно аквадага. Значения измеренного напряжения для исправного ТДКС должны соответствовать табл. 9.3.

Таблица 9.3. Постоянное напряжение на выходе диодно-каскадного умножителя ТДКСдля различных трансформаторов в зависимости от номинального размаха импульсов на коллекторе выходного транзистора и номинального напряжения на аноде кинескопа.

Номинальный размах импульсов на Но минальное напряжение на аноде кинескопа, кВ
коллекторе выходного транзистора, В 10 15 20 25 30 35
100 2500 3750 5000 6250 7500 8750
200 1250 1875 2500 3125 3750 4375
300 833 1250 1667 2083 2500 2917
400 625 938 1250 1563 1875 2188
500 500 750 1000 1250 1500 1750
600 417 625 833 1042 1250 1458
700 357 536 714 893 1071 1250
800 313 469 625 781 938 1094
900 278 417 556 694 833 972
1000 250 375 500 625 750 875
1100 227 341 455 568 682 795

Так, например, если в нормально работающей схеме размах импульсов на коллекторе выходного транзистора строчной развертки должно быть 900 В, а высокое напряжение на аноде кинескопа - 25 кВ, то при тестировании ТДКС по указанной выше методике его диодно-каскадный умножитель должен выдавать 694 В.

9.7.4. Как найти места пробоя или коронного разряда в ТДКС

Когда имеешь дело со строчными трансформаторами ТДКС или отдельными умножительными блоками высокого напряжения, неисправности из-за пробоя видны зачастую только при подаче высокого напряжения. Устройство для нагрузочного тестирования имеет выходной транзистор с заведомо хорошим сигналом на затворе. Таким образом, постепенно поднимая напряжение питания до 120-130 В (вместо 15 В при нагрузочном тестировании), можно проверить цепи горизонтального выходного каскада, высокого напряжения и других вторичных цепей питания, нагружающих строчный трансформатор.

Транзистор тестера заменяет выходной транзистор строчной развертки телевизора. Он точно так же включается и выключается, пропуская ток через первичную обмотку строчного трансформатора и отклоняющую катушку. Включение происходит с помощью вырабатываемого импульсным генератором управляющего сигнала. При использовании этого тестера шасси телевизора выдает почти нормальную развертку, высокое напряжение и другие вторичные напряжения питания, снимаемые с обмоток строчного трансформатора.

Время проводимости транзистора-заменителя также можно изменять от 5 мкс (минимум) до 35 мкс (максимум), регулируя длительность импульсов, подаваемых на его затвор. Меняя время проводимости транзистора-заменителя, можно ограничить и медленно увеличивать амплитуду импульсов на первичной обмотке строчного трансформатора и получающееся высокое напряжение, чтобы найти места пробоев или коронных разрядов в высоковольтных цепях.

Внимание! При проведении такого тестирования необходимо принять меры для того, чтобы высокое напряжение с умножителя не подавалось на анод кинескопа. Для этого высоковольтный кабель отсоединяют от анода кинескопа и тщательно изолируют контактный наконечник, поместив его, например, в стеклянный стакан.

9.7.5. Динамическое тестирование кадровых отклоняющих катушек

Меняющийся ток в обмотках отклоняющей катушки создает магнитное поле, перемещающее поток электронов вертикально и горизонтально по экрану кинескопа. В отклоняющих катушках иногда образуются закороченные или разомкнутые витки, что может привести к полному отсутствию отклонения, уменьшенному размеру растра, заворотам изображения или нелинейности.

Считаю необходимым высказать свое мнение по поводу сомнительных советов в разных источниках о "методиках резонансных проверок трансформаторов" с использованием генератора ЗЧ. Резонансная частота трансформатора зависит от числа витков, диаметра провода, свойств материала сердечника, высоты зазора. Много лет тому назад методом закорачивания части витков катушки, магнитной антенны (аналогично и в трансформаторе), резонанс смещали выше по частоте без особого ущерба для работы в "резонансе". Поэтому витковые замыкания не сказываются на отсутствии резонанса, а только повышает его частоту, снижая добротность. Форма синусоиды закороченными обмотками, не искажается, а применять импульсы вообще не разумно по причине возникновения импульсов ударного возбуждения.
На форму импульса может влиять насыщение сердечника. Но тогда о каком резонансе речь и какой мощности должен быть генератор? По ряду причин может наблюдаться несколько резонансов. Так что можно только сожалеть о напрасно потраченном времени, реализуя такие советы.
Трансформаторы импульсных блоков питания выходят из строя, чаще всего, по причине разогрева первичной обмотки, когда происходит короткое замыкание (КЗ) в силовых ключах. Это особенно часто происходит в небольших по размеру трансформаторах, и трансформаторах намотанных тонким проводом, например в блоках питания современных видеомагнитофонах и ведеоплейеров. Провод за короткое время сильно разогревается, при этом происходит разрушение изоляции. В результате возникают межвитковые замыкания, резко снижающие добротность, что нарушает режим работы автогенератора.
В схемах с внешним возбуждением срабатывают различные защиты, в том числе и по току, блокирующие работу импульсных источников питания(ИИП), защищающие микросхемы и силовые ключи. При анализе неисправности следует считать, что повышенное напряжение на вторичках и работа в "разнос" показатель нормального качества трансформатора.
Один из наиболее сложных дефектов - "мерцающее КЗ", то есть проявляющиеся периодически. Это связано с электромеханическими явлениями, в частности перетирание витков обмоток плохо натянутых или не закрепленных по требованиям технологии намотки. Неравномерный нагрев разных обмоток и их расширение, с учетом вибрации в магнитном поле, создает условия для локального разрушения изоляции и возникновения "мерцающих" межвитковых замыканий. Тогда силовые ключи выходят из строя внезапно, и как бы беспричинно.
Такие проблемы вообще требуют специальных методов диагностики с применением активного режима работы трансформатора. Большое количество вариантов приборов для проверки на КЗ обмоток проблему не решают, и в практике ремонта не прижились в виду малой достоверности результатов проверок. Предлагается доступный метод контроля качества трансформаторов, в "домашних" условиях. Для этого используется подключение низковольтной обмотки трансформатора импульсного блока питания (БП), или накальной обмотки ТДКС к выводам накала работающего телевизора, примерно так, как показано на рисунках. При этом телевизор используется в качестве генератора мощных импульсов. Наличие КЗ витков легко определяется по перегрузке источника импульсов. Но практичнее использовать для этих целей генератор автора, на базе стандартного ИИП. Об одном из вариантов такого устройства можно прочитать

Рис.1 Вариант для накала


Рис.2 Вариант для БП

Для тестирования ТДКС удобнее применять работающий ИИП, используя его в качестве генератора импульсов. ТДКС выпаивают и включают по схеме проверки, как высоковольтный преобразователь для получения ускоряющего напряжения Рис 2. Высоковольтный вывод ТДКС необходимо соединить с отрицательным выводом умножителя через простейший разрядник. Можно использовать провод с двумя зажимами типа "крокодил". Импульсы, генерируемые, ИИП имитируют работу ТДКС в рабочем режиме. Импульсное питание от обмотки ИИП обеспечивает работу умножителя и на его выводах + / - возникает высокое напряжение 10 - 18 кВ. Это напряжение пробивает разрядный промежуток и наблюдается в виде искры. Для нормально работающих и исправных ТДКС искра в разрядном промежутке достигает 2 - 4 см. Таким образом можно безопасно обнаружить места пробоя изоляции корпуса ТДКС так называемые "свищи".
Не смотря на высокие напряжения токи безопасны, но применение стандартных требований техники безопасности не повредит.

Дополнительную, полезную информацию, по ремонту телевизоров можно получить из раздела нашего Форума.

Строчные трансформаторы применяются для создания разверток в телевизоре. Приборы заключены в корпус, защищающий от высокого напряжения соседние детали. Раньше в цветных, черно-белых телевизорах при помощи строчного трансформатора ТВС получали ускоряющее напряжение. В схеме применялся умножитель. Строчный высоковольтный трансформатор передавал преобразованный электрический сигнал на представленный элемент. Умножитель вырабатывал напряжение фокусировки, обеспечивая работу второго катодного анода.

Сегодня применяется в схемах телевизора трансформатор диодно-каскадный строчной развертки (ТДКС). Что собой представляет подобная техника, как проверить ее своими руками и произвести ремонт, будет рассмотрено далее.

Особенности

Трансформаторы типа ТДКС сегодня включаются в схему телевизора для обеспечения анода (второго) кинескопа электрическим током с требуемыми параметрами. Напряжение исходящее составляет 25-30 кВ. В процессе работы оборудования формируется электрический поток. Это ускоряющее напряжение 300-800 В.

В зависимости от категории трансформаторов ТДКС, цоколевки, образуется вторичное напряжение, которое является дополнительным для обеспечения развертки кадрового типа. Приборы оборудования снимают в трансформаторах телевизоров сигнал луча кинескопа автоматически подстроенной частоты строчной развертки.

Схема подключения, цоколёвка в представленном трансформаторе характеризуют устройство. Прибор обладает первичной обмоткой. На нее подается электрический ток для дальнейшей развертки. С первичного контура подается питание для функционирования усилителей видеосигнала. Обмотка передает электричество на вторичную катушку. Отсюда производится питание соответствующих цепей.

Видео: Строчный трансформатор

Строчному трансформатору вменяется питание второго анода, ускоряющее напряжение, фокусировка. Эти процессы производятся в ТДКС. Регулировка происходит при помощи потенциометров. Трансформаторам представленной категории обеспечивается определенная цоколевка. Расположение выводов может быть в виде буквы О или U.

Поломка

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызвает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  1. Обрыв контура.
  2. Пробой герметичного корпуса.
  3. Замыкание между витков.
  4. Обрыв потенциометра.

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники.

Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк. Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Проверка осциллографом

Если телевизору требуется проверка в системе ТДКС, проверка выполняется при помощи осциллографа. Для ремонта телевизора потребуется отрезать питающий прибор вывод. Далее нужно найти вторичный контур. Его работу исследуют при подключении к отрезанному выводу питания ТДКС через R-10 Ом. Замена или ремонт устройства потребуется, если подключение осциллографа выявит отклонения. Возможны следующие отклонения:

  • Межвитковое замыкание демонстрирует на R=10 Ом «прямоугольник» с большими помехами. Здесь остается почти все напряжение. Если неисправности в этой области нет, отклонение будет определяться долями вольта.
  • Если нет вторичного напряжения, требуется замена контура. Произошел обрыв.
  • Когда убирают R=10 Ом и создают нагрузку 0,2-1 кОм на вторичном контуре, оценивается нагрузка на выходе. Она должна повторять входящие показатели. Если есть отклонение, ТДКС подлежит ремонту или полной замене.

Существуют и другие поломки. Выявить их можно самостоятельно.

Восстановление прибора

Самостоятельная замена и ремонт ТДКС вполне возможна. Определив неисправность, можно восстановить работу системы. Рассматривая, как подключить строчный трансформатор к телевизорам, необходимо изучить процедуру возобновления его работы. В случае полной замены трансформаторного прибора, потребуется подобрать новое оборудование с соответствующей системой выводов. Только в этом случае техника будет работать корректно.

Если оборудование не работает из-за пробоя, значит, в корпусе появилась трещина. Найти ее можно при осмотре. Трещину потребуется зачистить, обезжирить, а затем залить эпоксидным клеем. При этом слой смолы должен составлять не менее 2 мм. Это позволит предотвратить пробой в дальнейшем.

Ремонт ТДКС при обрыве контура проблематичен. Потребуется перемотать катушку. Это трудоемкий процесс, требующий от мастера высокой концентрации на протяжении всей процедуры. Замена намотки возможна, но для этого требуется определенный опыт.

Если оборвалась обмотка накала, линию формируют из другого места. Применяется в этом случае изолированный провод. Кабель наматывают на сердечник. Напряжение устанавливается при использовании резистора.

Другие поломки

Существует множество причин, почему не работает ТДКС. Опытные радиолюбители помогут изучить распространенные неисправности.

Если в приборе пробит транзистор, необходимо его достать и замерять коллекторное напряжение без него. При определении слишком высокого показателя, его регулируют до требуемого значения. При невозможности совершения подобной процедуры, нужно поменять в блоке питания стабилитрон. Обязательно нужно установить новый конденсатор.

Рекомендуется проверить пайку на всех разъемах. При необходимости ее усиливают. Если такая проблема определялась на конденсаторах, их выпаивают. Осмотр может выявить почернение. Потребуется приобрести новую деталь. Если прямоугольные конденсаторы раздуты, их также следует заменить. Если видно остатки канифоли, их следует убрать при помощи спирта и щетки.

При постоянном пробивании транзистора в строчной разверстке, следует определить тип неисправности. Пробой может быть тепловым или электрическим. Именно неисправный трансформатор приводит к появлению подобной проблемы.

Интересное видео: Высокое напряжение на ТДКС

Рассмотрев особенности строчных трансформаторов, а также их возможные неисправности, можно самостоятельно произвести ремонтные работы. В этом случае приобретать новую, дорогую технику не потребуется. В некоторых случаях отремонтировать монитор без подобных действий не получится. Далеко не для каждого кинескопа сегодня в продаже представлены приборы ТДКС. Поэтому замена неисправных его частей порой является единственным приемлемым выходом.

Печать

ТДКС, что это такое? Проще сказать — это трансформатор, спрятанный в герметичный корпус, так как напряжения в нем значительные и корпус защищает от высокого напряжения расположенные рядом элементы. ТДКС используется в строчной развертке современных телевизоров.

Раньше в отечественных телевизорах цветных и черно-белых напряжение второго анода кинескопа, ускоряющее и фокусировки, вырабатывалось в два этапа. С помощью ТВС (трансформатор высоковольтный строчный) получалось ускоряющее напряжение, а дальше с помощью умножителя получали напряжение фокусировки и напряжение для второго анода катода.

У ТДКС расшифровка такая — трансформатор диодно-каскадный строчный, вырабатывает напряжение питания второго анода кинескопа 25 — 30 кВ, а так же формирует ускоряющее напряжение 300 — 800 В, напряжение на фокусировки 4 — 7 кВ, подает напряжение на видеоусилители — 200 В, тюнера — 27 31 В и на нити накала кинескопа. В зависимости от ТДКС и схемы построения, формирует дополнительные вторичные напряжения для кадровой развёртки. С ТДКС снимаются сигналы ограничения тока луча кинескопа и автоподстройки частоты строчной развёртки.

Устройство ТДКС рассмотрим на примере тдкс 32-02. Как и положено трансформаторам он имеет первичную обмотку, на которую подается напряжение питания строчной развертки, а также снимается питание для видеоусидителей и вторичные обмотки, для питания уже указанных выше цепей. Количество их может быть различным. Питание второго анода, фокусировки и ускоряющего напряжения происходит в диодно-конденсаторном каскаде с возможностью их регулировки потенциометрами. Еще, что следует отметить это расположение выводов, в большинстве своем трансформаторы бывают U — образные и O — образные.

В таблице ниже приведена распиновка ТДКС 32 02 и его схема.

Характеристика трансформатора, назначение выводов

Тип

колич

вывод

Uанода

видео

накал

26/40В

15В

ОТЛ

фокус-

корпус

заземл.

анод-

фокус

питания

развертки

ТДКС-32-02

27кВ

1-10

есть

нет

115 В

Нумерация начинается если смотреть снизу, слева на право, по часовой стрелке.

Замена

Подобрать для нужного ТДКС аналоги трудно, но возможно. Просто необходимо сравнить характеристики имеющихся трансформаторов с нужным, по выходным и входным напряжениям, а так же по совпадению выводов. Например, для ТДКС 32 02 аналог — РЕТ-19-03. Однако хотя они идентичны по напряжению, у РЕТ-19-03 отсутствует отдельный вывод заземления, но проблем это не создаст, так как он просто соединен внутри корпуса на другой вывод. Прилагаю для некоторых тдкс аналоги

Иногда не получается найти полный аналог ТДКС, но есть схожий по напряжениям с различием в выводах. В этом случае нужно после установки трансформатора в шасси телевизора, разрезать не совпадающие дорожки и соединить в нужной последовательности кусочками изолированного провода. Будьте внимательны при проведении данной операции.

Поломки

Как и всякая радиодеталь, строчные трансформаторы тоже ломаются. Так как цены на некоторые модели достаточно велики, необходимо сделать точную диагностику поломки, чтобы не выкинуть деньги на ветер. Основные неисправности ТДКС это:

  • пробой корпуса;
  • обрыв обмоток;
  • межвитковые замыкания;
  • обрыв потенциометра screen.

С пробоем изоляции корпуса и обрывом более менее все понятно, а вот межвитковое замыкание выявить достаточно трудно. Например, пищит ТДКС, это может быть вызвано как нагрузкой во вторичных цепях трансформатора, так и межвитковым замыканием. Самое лучшее использовать прибор для проверки ТДКС, ну а если такового нет искать альтернативные варианты. О том, как проверить ТДКС телевизора, можно почитать в статье на сайте «Как проверить трансформатор «.

Восстановление

Пробой — это обычно трещина в корпусе, в этом случае ремонт ТДКС будет достаточно прост. Зачищаем крупной наждачной бумагой трещину, очищаем его, обезжириваем и заливаем эпоксидной смолой. Слой делаем достаточно толстый, не менее 2 мм, для исключения повторного пробоя.

Восстановление ТДКС при обрыве и замыкании витков крайне проблематично. Помочь может только перемотка трансформатора. Никогда не выполнял такую операцию, так как она очень трудоемка, но при желании, конечно, все возможно.

При обрыве обмотки накала лучше ее не восстанавливать, а сформировать из другого места. Для этого наматываем пару витков изолированным проводом вокруг сердечника ТДКС. Направление намотки не важно, но если нить накала не засветилась, поменяйте местами провода. После намотки нужно установить напряжения накала при помощи ограничительного резистора.

Если не регулируется ускоряющее напряжение (screen), то в данном случае можно сформировать его. Для этого надо создать постоянное напряжение около 1kV с возможностью его регулировки. Такое напряжение есть на коллекторе строчного транзистора, импульсы на нем могут быть до 1,5 кВ.

Схема проста, напряжение выпрямляется высоковольтным диодом и регулируется потенциометром, который можно взять с платы кинескопа старого отечественного телевизора 2 или 3УСЦТ.

Тестер трансформаторов - это незаменимый прибор при ремонте телевизоров, мониторов и других подобных устройств. С большой точностью он может указать на КЗ в витках. У меня работает с 2003 года, на работу нареканий нет. Прибор запускается сразу и налаживания не требует. Подключил, кнопку нажал, посмотрел - если будет замыкание в витках - покажет. Не подводил еще ни разу, таким тестером намного лучше, чем генератором да осциллографом, наличия короткого вычислять. Собирал по оригинальной схеме, только мастеркитовскую печатку немного переделал, сжал и поместил на нее батарейки питания. Дальше схема электрическая и описание от автора, опубликованное в журнале "Ремонт электронной техники ":

Данный несложный прибор позволяет без выпаивания трансформатора из схемы диагностировать дефекты и существенно сократить время ремонта. Известно, что частая причина отказов телевизоров и мониторов - это выход из строя силовых элементов блоков питания и строчной развертки. Это легко объяснимо, ведь они работают в очень тяжелых условиях, при высоких токах и напряжениях. Нередко выход из строя одного элемента, например строчного трансформатора, провоцирует выход из строя других связанных с ним элементов, таких как выходной транзистор или демпферные диоды. Иногда трудно сразу обнаружить все поврежденные элементы и определить причину их отказа, а при неправильно определенной причине замененные элементы могут через короткое время снова выйти из строя, увеличивая затраты на ремонт и, что еще хуже, роняя репутацию мастера в глазах клиентов.

Наиболее трудными для диагностики являются импульсные трансформаторы блоков питания, строчные трансформаторы и отклоняющие катушки ЭЛТ. Наиболее частый вид их отказа - появление короткозамкнутых витков, и он никак не диагностируется при помощи тестера. Проверка методом замены на заведомо исправный элемент также не всегда возможна, ведь такие трансформаторы обычно делаются под конкретную модель телевизора и являются весьма дорогостоящими элементами.

Существенно облегчить диагностику любых трансформаторов и дросселей на ферритовых сердечниках помогает предлагаемый тестер импульсных трансформаторов. Идея работы прибора основана на том факте, что все подобные трансформаторы работают на принципе накопления энергии и поэтому должны иметь высокую добротность, а наличие короткозамкнутых витков резко ее снижает. Задача состоит в том, как ее оценить простыми средствами.

Можно возбудить в контуре ударные колебания и подсчитать число периодов, за которое амплитуда упадет до определенного уровня. Известно, что это число пропорционально добротности контура. На этом принципе и построен прибор.

Тестер состоит из трех частей: генератора импульсов ударного возбуждения, компаратора импульсов “звона” и счетчика импульсов. Генератор импульсов собран на компараторе DA1.2 (LM393), транзисторах VT1, VT2 и диоде VD2. Он вырабатывает короткие импульсы ударного возбуждения длительностью около 2 мс и частотой около 10 Гц. Диод VD2 устанавливает амплитуду импульсов возбуждения равной примерно 0,7 В, что позволяет проводить проверку трансформаторов без их выпаивания из схемы, так как при таком напряжении имеющиеся в схеме p-n-переходы оказываются закрытыми и не влияют на результат измерения.

Проверяемый трансформатор подключается к выводам 3 и 4 тестера и совместно с конденсатором СЗ создает колебательный контур. По спаду импульса возбуждения открывается транзистор VT2 и начинаются свободные затухающие колебания в образованном колебательном контуре. Эти колебания через переходной конденсатор С4 поступают на вход компаратора импульсов, собранного на DA1.1. На этот же вход поступает напряжение порога срабатывания, которое формируется делителем R11, R12 и опорным источником VD3. Порог выбран на уровне 10% от напряжения возбуждения.

В качестве опорного источника порога использован диод того же типа, что и в источнике ударного возбуждения, что гарантирует стабильность параметров тестера в достаточно широком диапазоне температур и питающих напряжений. С выхода компаратора импульсы поступают на вход счетчика импульсов, собранного на микросхеме DA2. Эта микросхема представляет собой два четырехразрядных сдвиговых регистра с последовательными входами.

В схеме тестера эти регистры соединены последовательно в один восьмиразрядный регистр, и информационный вход первого регистра подключен к лог. “1”. На тактовые входы микросхемы (выводы 1, 9) подаются импульсы с компаратора. Ко всем выходам регистра через токоограничивающие резисторы R15...R22 подключены светодиоды. Во время формирования импульса возбуждения регистры обнуляются по входам Reset (выводы 6 и 14) и все светодиоды гаснут. По спаду импульса возбуждения начинается колебательный процесс в контуре подключенного трансформатора. Возникшие колебания преобразуются компаратором в логические импульсы, которые далее поступают на сдвиговый регистр.

В сдвиговом регистре каждый импульс переносит лог. “1” на очередной разряд, зажигая последовательно светодиоды HL1...HL8. Для удобства пользования первые три светодиода красные (трансформатор неисправен), следующие два - желтые (ситуация неопределенная) и последние три - зеленые (трансформатор исправен). После окончания колебательного процесса число светящихся светодиодов равно числу периодов колебания. Если число импульсов более 8, то светятся все светодиоды.

Работа с прибором при проведении ремонта. Сначала нужно, не отпаивая никаких компонентов, подключить прибор выводом GND к шасси телевизора, а выводом НОТ к коллектору выходного транзистора строчной развертки. Если при нажатии на кнопку “Тест” загорится более четырех светодиодов, это говорит об исправности выходных цепей строчной развертки. Если светится менее двух светодиодов, то это говорит о наличии коротких замыканий на выходе цепей - необходимо выпаять выходной транзистор и повторить измерение.

Если после этого светится более четырех светодиодов, то требуется замена выходного транзистора, в противном случае нужно выпаять демпфирующий диод и повторить измерение. Свечение более четырех светодиодов свидетельствует о необходимости замены этого диода. Такие же операции необходимо повторить с конденсатором обратного хода и отклоняющими катушками ЭЛТ. Если результат отрицательный, то необходимо выпаять строчный трансформатор и провести его тестирование вне схемы. Свечение менее двух светодиодов при проверке выпаянного трансформатора говорит о наличии короткозамкнутых витков в трансформаторе и необходимости его замены.

Порядок проверки импульсных блоков питания и отклоняющих катушек ЭЛТ аналогичен. Следует только отметить, что при проверке может потребоваться временно отключить шунтирующие цепи, которые устанавливаются параллельно обмоткам.

Аналог микросхемы 4015 - К561ИР2, она совсем не дефицит, в магазинах без проблем можно будет купить. правда для более мощных обмоток (генератор авто, электродвигатели) он не годится, на ферритовых сердечниках покажет любое КЗ, а на трансформаторной стали - нет. Транзистор поставил 2N5401, а на месте полевого - 2N7000, подбирать ничего не надо. Прибор запускается сразу. Автор схемы В. Чулков , сборка nickolay78 .

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ТРАНСФОРМАТОРОВ

Случайные статьи

Вверх